Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells.

نویسندگان

  • H Dally
  • A Hartwig
چکیده

Compounds of nickel(II) and cadmium(II) are carcinogenic to humans and to experimental animals. One frequently discussed mechanism involved in tumor formation is an increase in reactive oxygen species by both metals with the subsequent generation of oxidative DNA damage. In the present study we used human HeLa cells to investigate the potential of nickel(II) and cadmium(II) to induce DNA lesions typical for oxygen free radicals in intact cells and the effect on their repair. As indicators of oxidative DNA damage, we determined the frequencies of DNA strand breaks and of lesions recognized by the bacterial formamidopyrimidine-DNA glycosylase (Fpg protein), including 7,8-dihydro-8-oxoguanine (8-hydroxyguanine), a pre-mutagenic DNA base modification. Nickel(II) caused a slight increase in DNA strand breaks at 250 microM and higher, while the frequency of Fpg-sensitive sites was enhanced only at the cytotoxic concentration of 750 microM. The repair of oxidative DNA lesions induced by visible light was reduced at 50 microM and at 100 microM nickel(II) for Fpg-sensitive sites and DNA strand breaks, respectively; the removal of both types of lesions was blocked nearly completely at 250 microM nickel(II). In the case of cadmium(II), DNA strand breaks occurred at 10 microM and no Fpg-sensitive sites were detected. However, the repair of Fpg-sensitive DNA lesions induced by visible light was reduced at 0.5 microM cadmium(II) and higher, while the closure of DNA strand breaks was not affected. Since oxidative DNA damage is continuously induced during aerobic metabolism, an impaired repair of these lesions might well explain the carcinogenic action of nickel(II) and cadmium(II).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent advances in metal carcinogenicity*

The carcinogenicity of nickel, chromium, arsenic, cobalt, and cadmium compounds has long been recognized. Nevertheless, the mechanisms involved in tumor formation are not well understood. The carcinogenic potential depends on metal species; major determinants are oxidation state and solubility. Two modes of action seem to be predominant: the induction of oxidative DNA damage and the interaction...

متن کامل

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Nickel(II) interferes with the incision step in nucleotide excision repair in mammalian cells.

Nickel compounds are carcinogenic to humans and experimental animals. However, the mechanisms leading to tumor formation are still not understood since the mutagenic potential is rather weak. In contrast, nickel(II) enhances the cytotoxicity and genotoxicity in combination with several other DNA-damaging agents. To elucidate possible interactions with DNA repair processes, the effect of nickel(...

متن کامل

Inhibition of Ape1 nuclease activity by lead, iron, and cadmium.

Many environmental metals are co-carcinogens, eliciting their effects via inhibition of DNA repair. Apurinic/apyrimidinic (AP) endonuclease 1 (Ape1) is the major mammalian abasic endonuclease and initiates repair of this cytotoxic/mutagenic lesion by incising the DNA backbone via a Mg(2+)-dependent reaction. In this study we examined the effects of arsenite [As(III)], cadmium [Cd(II)], cobalt [...

متن کامل

A journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3

Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 1997